适用于复杂节点及大规模量测数据的快速状态估计方法
Abstract:
本发明公开了电力系统状态估计技术领域中的一种适用于复杂节点及大规模量测数据的快速状态估计方法。包括:分别将连续的T个时刻的M个测量值纳入到量测集合中,形成M×T二维数组;对所述M×T二维数组进行LLE非线性降维;对每个节点电压幅值和相角分别进行样本训练,生成电压幅值和相角样本模型,并利用生成的样本模型,进行节点电压幅值和相角预测;利用牛顿拉夫逊迭代法进行预测值修正,获得状态估计值;将状态估计值作为第T个时刻的状态真值放置到状态量集合中;取到第T+1个时刻为止的前T个时刻的量测数据,重复前述步骤,获得第T+1时刻的状态估计值,实现滚动预测。本发明在保证预测精度的前提下,实现了对大规模高维样本数据的快速训练和对系统状态量的预测。
Patent Agency Ranking
0/0