基于经验模态分解的边缘检测方法
摘要:
本发明公开了一种基于经验模态分解的边缘检测方法,主要解决现有技术在噪声环境下,不能够很好地检测到清晰完整的图像边缘和虚假边缘较多的问题。其技术特点是:(1)在经验模态分解中,利用求解两个偏微分方程得到图像的极大值包络和极小值包络;(2)由图像的极大值包络和极小值包络得到图像的平均包络和差值包络;(3)继续不断地对步骤(1)和(2)迭代,直到满足迭代停止条件时,得到图像的固有模态函数和剩余图像;(4)对得到的剩余图像用两个Prewitt算子计算其梯度和门限,进而得到图像的边缘。本发明与传统Prewitt算子和Canny算子的检测效果相比,能得到更清晰完整的图像边缘,同时减少了虚假边缘以及噪声对边缘检测的影响。
公开/授权文献
0/0