一种用于Web服务推荐的个性化搜索方法
摘要:
本发明公开了一种用于Web服务推荐的个性化搜索方法,包括以下步骤:步骤1,预处理WSDL文档:通过去除停用词和提取词干两个预处理步骤,形成词袋;步骤2,抽取用户兴趣:使用改进的TF-IDF公式计算词袋中的每一个词的权重,并乘以该词的时间衰减因子,得到新的权重;选择权重由大至小前k个词作为用户的兴趣词,以及每个词的对应权重,组成k维的用户兴趣向量;步骤3,计算兴趣相似度:设定相似度阈值,超过阈值的用户入选为目标用户的邻居用户;步骤4,排序服务检索结果,根据邻居用户的相似度及其选择服务的次数计算服务的推荐预测值,并将检索结果按照推荐预测值降序排列,从而得到个性化搜索结果。
公开/授权文献
0/0