一种基于非局部理论的图像去噪方法
摘要:
基于非局部理论的图像去噪方法,包括如下步骤:输入含高斯白噪声图像u;设置算法中的参数;初步滤波得到u1;计算差图像uc1=u-u1;调用梯度算子(Candy算子、Roberts算子及Prewitt算子均可),检测出uc1的边缘ub1,并把它的位置当作所要提取的细节的位置信息,即检测出的边缘位置,也就是细节丢失的位置;利用步骤5中得到的细节的位置信息将u中丢失的细节ux1提取出来,包括位置信息所在像素点及其邻域的像素值,其他位置的像素值置零;将已经提取出的细节按比例叠加回图像u1;依据步骤2中的迭代参数ξ,ξ为一常数,然后利用步骤5中所调用的梯度算子所检测出的边缘图像矩阵ub1,计算矩阵ub1内所有像素的和θ,如θ≤ξ,则迭代停止,如θ≥ξ,则重复4~7步骤;迭代完成后,得到输出图像un。本发明的图像去噪新方法可以在滤除噪声的同时有效地保持图像的边缘细节信息。
公开/授权文献
0/0