一种基于成对约束判别分析-非负稀疏散度的高光谱数据降维方法
摘要:
一种基于成对约束判别分析‑非负稀疏散度的高光谱数据降维方法,属于高光谱遥感图像处理方法。本发明针对源高光谱数据和目标高光谱数据来自不同分布时,很多先进的基于机器学习的高光谱数据分类算法的分类性能变差。首先,根据一种能自动获得包含判别信息的成对约束样本,提出成对约束判别分析;然后,设计一种非负稀疏散度准则来构建不同分布的源领域和目标领域高光谱数据之间的桥梁;最后,结合这两部分,实现源高光谱数据到目标高光谱数据的知识迁移。优点:解决不同时间、不同地域或不同传感器获得高光谱数据间的知识迁移;能够有效地利用源领域高光谱数据的信息去分析目标领域高光谱数据并获得较高的整体分类精度和Kappa系数。
0/0