基于流形学习数据压缩哈希的图像检索方法
摘要:
本发明公开了一种基于流形学习数据压缩哈希的图像检索方法,主要解决图像检索中内存占用率大、检索性能低的问题。其实现步骤为:1.提取原始图像特征,并对其作归一化处理;2.将归一化数据划分为训练数据和测试数据;3.对训练数据压缩,得到综合压缩数据;4.对综合压缩数据进行低维嵌入,得到低维的综合压缩数据;5.通过图模型,分别得到综合压缩数据与训练数据、测试数据之间的近邻关系矩阵;6.分别阈值化综合压缩数据与两个近邻关系矩阵的乘积,得到训练数据和测试数据的哈希码;7.根据训练数据和测试数据哈希码之间的汉明距离得到检索结果。本发明降低了内存消耗,提高图像检索性能,可用于物联网和移动设备图片搜索服务。
公开/授权文献
0/0