一种基于关联分析和主成分分析的时间序列数据清洗方法
摘要:
本发明公开了一种基于关联分析和主成分分析的时间序列数据清洗方法,步骤:采用皮尔逊系数分析法(PCC)找出变压器故障和其它电力数据的一些隐藏关联;采用主成分分析法(PCA)对所有相关的时间序列进行降维、降噪处理;将清洗后的一部分数据作为训练集输入到BP神经网络(BPNN)中进行训练学习,并用剩下的部分数据作为测试集对模型加以验证。本发明与传统技术相比,能显著提高变压器故障诊断的精确度,同时可以提高分类的准确度,并且在面对高维数据时,运算时间更短。
0/0