发明授权
CN105718947B 基于LBP和小波矩融合特征的肺癌图像精细分类方法
失效 - 权利终止
摘要:
本发明公开一种基于LBP和小波矩融合特征的肺癌图像精细分类方法,该方法包括以下步骤:步骤一、对输入图像进行病灶定位。步骤二、病灶部位随机生成大量模板。步骤三、输入图像进行不同尺度缩放,分别对图像块与模板块进行纹理特征MB‑LBP与形状特征小波矩的提取,通过实验调整权重参数融合两种特征。步骤四、图像不同位置匹配,得到特征响应图。步骤五、使用改进的均值空间金字塔模型将响应图转化成特征向量。步骤六、利用支持向量机实现精细分类。本发明提出的算法,是精细分类思想在医学领域的尝试,减少冗余模板的产生;LBP纹理特征与小波矩特征的融合良好的表示肺癌图像信息;金字塔模型抽取特征保留了有力的特征,提高识别精度。
公开/授权文献
- CN105718947A 基于LBP和小波矩融合特征的肺癌图像精细分类方法 公开/授权日:2016-06-29