一种基于深度学习的危险驾驶行为实时检测方法
摘要:
本发明提出一种基于深度学习的危险驾驶行为实时检测方法,搭建前车图像采集系统,收集训练样本并进行人工标注,建立危险驾驶行为数据集;基于深度学习的方法,根据危险驾驶行为数据集的特点,提出空间金字塔池化的卷积深度置信归一化分类网络(SPP‑CDBRNet)模型;对建立的数据集进行预处理,采用带动量的随机梯度下降方法,利用预处理后的数据集对SPP‑CDBRNet模型进行训练,得到能够精确识别是否具有危险驾驶行为(驾驶途中使用手持电话和抽烟)的SPP‑CDBRNet;利用确定的SPP‑CDBRNet模型,对前车图像进行检测,实现对危险驾驶行为的实时检测。本发明能够有效地提高危险驾驶行为检测的精度,并有具有良好的实时性和迁移性,具有广阔的应用前景。
0/0