基于对抗式生成网络的深度学习对抗性攻击防御方法
摘要:
一种基于对抗式生成网络的深度学习对抗性攻击防御方法,包括以下步骤:1)基于生成对抗网络在学习样本分布中表现出来的高性能,设计了通过生成对抗网络生成对抗样本的方法,在增加了目标模型网络集合TMi后,基于G网络的样本生成变成了一个多目标的优化问题;对于AG‑GAN模型的训练主要是对生成网络G和判别网络D的参数训练,分为三个模块;2)利用AG‑GAN生成的对抗样本训练被攻击的深度学习模型,从而提高其防御不同种对抗样本的能力。本发明一种基于对抗式生成网络的深度学习对抗性攻击防御方法,有效提高其安全性。
0/0