一种基于网络流量的多层异常检测方法
摘要:
本发明公开了一种基于网络流量的多层异常检测方法。使用本发明能够很好地检测出小流量攻击行为,检测正确率高,且能适应不同的数据集。本发明首先在数据预处理阶段,将符号属性采用二进制表示,消除了传统的数值大小对分类的负面影响,且将数据集的属性集升高到一个较高的维度,使得后续的数据分类效果更加准确;然后采用降维方法提取特征,降低了数据量,使得后续步骤能够运行速度更快、内存消耗更低;随后,采用KNN离群点检测方法和遗传算法的结合方法进行数据选择,使得不同类别的数据量更加平衡,每类数据之间分离的尽可能远,分类结果更加公平;最后,利用构建的多层分类器,能够更为准确地将大流量攻击、小流量攻击识别出来。
公开/授权文献
0/0