一种电力负荷SOM-FCM分层聚类方法
摘要:
本发明公开了一种基于负荷波动特征提取的电力负荷SOM-FCM分层聚类方法,包括下述步骤:S1、将电力负荷有功时序数据作为输入,对负荷数据预处理后,求取波动性特征向量;S2、对步骤S1得到的波动性特征向量采用自组织映射神经网络(SOM)聚类算法进行第一层粗分聚类,获取聚类结果和权值矩阵;S3、将步骤S2中粗分的结果作为自适应模糊C均值算法(FCM)的输入,并加入有效函数判断,最终得到聚类数目最优的聚类结果。本发明通过提取负荷波动性特征参数对电力负荷自适应聚类,解决了电力负荷组成复杂,数目繁多情况下的聚类难题,从负荷曲线波动性本身对负荷进行聚类,分析数据易于获取,计算简便且易于移植。
0/0