一种基于知识增强记忆网络的序列推荐方法
摘要:
本发明提供一种基于知识增强记忆网络的序列推荐方法,利用GRU获取用户的序列偏好表示,利用KV‑MN来存储知识库信息,并通过KV‑MNs构建基于属性的用户偏好表示,将所述序列偏好表示和所述基于属性的用户偏好表示合并生成最终的用户表示。使得本发明能够具有两类模型的优点;将产品和知识库中的实体关联在一起,使用了大规模的知识库信息提升了序列推荐结果;通过使用知识库中的实体属性信息,提高了KV‑MNs的语义表示能力,从而使得推荐过程在一定程度上可以被解释。
公开/授权文献
0/0