一种基于深度学习的文档主题向量抽取方法
摘要:
本发明涉及一种基于深度学习的文档主题向量抽取方法,属于自然语言处理技术领域。本发明方法利用卷积神经网络抽取出具有局部的深层的语义信息,利用LSTM模型将时序信息学习出来,使得向量的语义更加全面,选用上下文短语和文档主题的隐含的共现关系,避免了一些基于句子的主题向量模型对于短文本的缺点,利用注意力机制将CNN和LSTM模型有机的结合起来,学习了上下文的深层语义、时序信息和显著信息,更有效的构建了档主题向量抽取的模型。
公开/授权文献
0/0