核反应堆包壳材料辐照肿胀的集成学习预测方法
摘要:
本发明提供一种核反应堆包壳材料辐照肿胀的集成学习预测方法,涉及组合多个弱监督模型结果的集成学习材料预测技术领域。本发明采用堆叠的多层异态回归器模型,其为两层架构,第一层包括四个不同的基学习器,分别为人工神经网络、支持向量机、梯度提升和随机森林,并且第一层采用5折交叉验证训练,第二层通过XGBoost建立。本发明能够降低偏差和方差,提高模型的泛化能力,使材料特性的预测结果更加准确。
0/0