一种细粒度指纹质量辅助下的复杂室内环境目标定位方法
摘要:
本发明属于室内定位技术领域,涉及一种细粒度指纹质量辅助下的复杂室内环境目标定位方法。本发明首先通过在每个格点采集RSS建立线离线纹库。在线上定位阶段,对于每一个测试样本根据目标信号和离线指纹库的相似性动态的构建支撑集,接着通过引入细粒度指纹质量对支撑集进行概率建模,得到概率模型,最后通过Gibbs‑EM算法迭代的求解概率模型,得到最终的位置估计。细粒度指纹质量充分挖掘了指纹在不同区域的优势,可以帮助模型选择可信度最高的位置估计,提高了定位精度。本方法基于传统的指纹定位,无需额外的指纹和硬件校正,有效克服复杂室内环境中由于环境变化造成的RSS波动问题。
0/0