结合ResNet和SENet的低分辨率行人检测方法、系统及存储介质
摘要:
本发明涉及图像处理技术,具体为低分辨率行人检测方法、系统及存储介质。本发明方法包括训练过程和测试过程,训练过程首先确定训练集、训练过程的参数;然后按批处理大小依次输入图片,提取训练图片的多尺度特征,并对浅层特征进行重构和增强,形成新的多尺度检测框架;最后进行框的分类和位置的回归,计算训练损失并反向传播,更新权重参数。测试过程首先是确定测试集,将训练过程得到的模型作为算法的测试模型,依次小批量输入测试图片、提取多尺度特征、对浅层特征进行重构和增强,然后进行框的分类和位置的回归。本发明采用深度学习网络,对浅层特征进行重构,同时提高浅层特征的有效性,以增强对低分辨率行人的检测能力。
0/0