一种基于自编码模式的CNN与GRU结合的心电信号分类方法
摘要:
一种基于自编码模式的CNN与GRU结合的心电信号分类方法,通过提取出原始信号中最具有代表性的特征,运用CNN+GRU进行特征提取,节省了空间,节省了很多训练空间,其中采用的GRU(门控循环单元)一方面解决了由于RNN训练时出现的梯度消失和梯度爆炸的问题,另一方面它比LSTM少一个门,更易于计算,能够提高训练效率,GRU优点在于当训练样本少时,可以使用防止过拟合,当训练样本多时,也可以节省很多的训练时间,能够提高网络的学习效率和心电信号识别的精度。
0/0