基于深度语义匹配的电力缺陷等级识别方法
摘要:
本发明公开了一种基于深度语义匹配的电力缺陷等级识别方法,涉及电力缺陷等级识别技术领域。传统的文本分类模型有基于布尔值的向量空间模型,无法考虑深层次的上下文语义,向量稀疏,不具有可解释性等缺点,针对电力设备缺陷文本,分类精度不高。本方法采用深度神经网络将句子分为输入层、表示层、匹配层、排序层与输出层等五层结构,实现深度结构语义模型;然后在输入层基于word hashing和分词模型对文本进行预处理;再基于深度神经网络,依次训练了输入层、表示层、匹配层,得到缺陷文本的低维表示向量;最后基于cosin距离的语义相似度和TopK排序模型得到待分类文本的平均缺陷等级。有效提升缺陷文本的等级识别率,实现高精度的电力缺陷等级识别。
公开/授权文献
0/0