基于超限学习机和融合卷积网络的3D物体识别方法
Abstract:
本发明涉及一种基于超限学习机和融合卷积网络的3D物体识别方法,模型以3D物体的多视角投影图作为输入,经过多层融合卷积网络提取特征,利用半随机的ELM网络进行分类;卷积网络由提出的融合卷积单元组成,是一种改进的残差单元,多个并行残差通道上的卷积核个数依次增加,相同大小的卷积核参数共享。半数卷积核参数以高斯分布随机产生,其余通过训练寻优得到,使其能拟合更复杂的非线性函数,增加低层网络的特征提取能力。方法中使用了半随机的超限学习机分类层,既降低了模型训练的时间又增加了网络的稀疏性;结合了超限学习机和融合卷积网络,以2D视角图作为输入,其识别3D物体的准确率高于现有的深度学习的方法,网络实现更简单。
Public/Granted literature
Patent Agency Ranking
0/0