一种基于跨模态深度学习的围术期危重事件预测方法
摘要:
本发明涉及一种基于跨模态深度学习的围术期危重事件预测方法,属于人工智能与医疗应用领域。该方法包括步骤1.构建多模态医疗监护数据集;2.患者监护数据与个性化数据双模态融合特征学习;3.跨模态协同学习特征提取;4.构建多模态危重事件(死亡风险)预测模型;5.模型反馈验证。本发明作为一种危重症不良事件预测预警工具,是实现术后主要重症事件的实时追踪、早期诊断和预警的一种有效方法。
0/0