一种结合机器学习的隧道衬砌无损检测的辅助判定方法
摘要:
本发明公开了一种结合机器学习的隧道衬砌无损检测的辅助判定方法:从采集的击振信号内提取特征参数;对特征参数内的反射时间进行回归拟合,得到标定值;以得到的特征参数表示原始信号,对此组特征值进行标记,记录其缺陷情况,以此作为一条训练集;在不同的测试对象上重复步骤上述步骤,增加训练集数量;利用模型训练软件进行模型训练;通过建好的模型,对未知检测结果的数据进行解析。本发明消减了由于厚度、材质变化产生的不利影响,增加了衬砌背面的反射时间作为缺陷判定参数,可以较好地反映缺陷特征,解决了现有的检测方法受工作人员主观因素影响较大,检测准确性较差的问题,实现了提高检测精度、降低人员主观干扰,确保检测结果客观准确的效果。
0/0