发明授权
摘要:
本发明公开了一种基于分类边界的用户隐私保护方法,包括:(1)将原始网络输入至GCN分类模型中,计算关键节点在真实类标下的损失函数,连边梯度信息;(2)更改关键节点的类标,计算新损失函数,新连边梯度信息;(3)根据关键节点的损失函数,连边梯度信息以及新损失函数,新连边梯度信息确定最容易被修改成的新类标;(4)根据关键节点在真实类标下的连边梯度信息,以及在容易被修改成的新类标下的新连边梯度信息,在原始网络中添加扰动,形成对抗网络;(5)利用对抗网络和原始网络训练GCN分类模型;(6)将添加有扰动的待测网络输入至训练好的GCN模型中,经计算输出正确的分类结果,实现对待测网络中用户隐私的保护。
公开/授权文献
- CN110097079A 一种基于分类边界的用户隐私保护方法 公开/授权日:2019-08-06