一种基于深度置信网络的Android恶意软件检测的方法
摘要:
本申请提出一种基于深度置信网络的Android恶意软件检测的方法,首先,提取出Android应用软件的权限和敏感API的特征;其次,使用深度置信网络DBN来构建深度学习模型,将提取出的所述特征使用深度学习模型进行处理,得到表征高层抽象特征的样本;然后使用分类算法,对通过深度学习模型输出的高层抽象特征进行分类,区分出恶意软件和正常软件。通过本发明基于深度置信网络的深度学习模型可以更好地表征Android恶意软件的高层抽象特征,其检测效果也明显优于传统的神经网络模型和机器学习模型。
0/0