一种基于脑电图频域数据的精神分裂症三分类方法
摘要:
本发明提供了一种基于脑电图频域数据的精神分裂症三分类方法,涉及精神分裂症辅助诊断分类领域。所述方法利用自发脑电技术,以在没有诱导的情况下获得受外界干扰较小的脑电图作为精神分裂症辅助诊断的数据来源,通过初始化数据处理后,将脑电图时域数据转换为频域数据,再对脑电图频域数据进行频段划分,将分段的数据分别作为矩阵处理,得到数量可控的LES特征,使用基于二次规划的频段权重分配算法得到分类效果最好的频域权重,利用支持向量机分类算法进行基于脑电图频域数据的精神分裂症的首阶段、健康阶段和临床高危综合征阶段的分类。通过本发明的实施,能够对精神分裂症进行科学而准确的分类,实现基于脑电图数据的精神分裂症辅助诊断。
0/0