一种基于融合特征的人体动作分类方法
摘要:
本发明公开了一种基于融合特征的人体动作分类方法,包括输入多个带标签的人体动作视频,将各动作视频转换成帧序列;使用预训练的沙漏人体姿势估计模型预测各帧的人体关节点3D坐标,得到关节点3D坐标数据集;将人体关节点坐标投影至三维平面;使用LSTM、GRU两种模型分别对投影后的数据进行特征提取,将提取的两组特征向量进行融合;基于融合后的特征训练人体动作视频分类模型,将视频数据输入训练好的人体动作视频分类模型,得到人体动作视频分类结果。本发明方法通过特征融合可挖掘人体动作的整体特征,增强模型对特征的辨别力,对于类间差别较小的动作分类更加准确。
公开/授权文献
0/0