一种多任务机器学习的预测方法
Abstract:
一种多任务机器学习的预测方法,本发明涉及多任务机器学习的预测方法。本发明的目的是为了解决现有用户画像模型预测准确率低,特征提取负担大的问题。过程为:一、采集各信息源数据,对各信息源数据做预处理,得到预处理后的文本;二、采用预处理后的各信息源数据训练各信息源各自的学习模型,对各信息源分别进行特征提取,得到各信息源的特征;三、将各信息源的特征编码为矢量,融合多源数据,构建多任务学习框架;四、对各个子任务设置不同的全连接层和损失函数,得到各个子任务的预测结果;五、将四中各个子任务的预测结果进行加权投票,输出最终预测结果。本发明用于机器学习预测领域。
Public/Granted literature
Patent Agency Ranking
0/0