一种风电功率非参数概率区间超短期预测方法
摘要:
本发明公开了一种风电功率非参数概率区间超短期预测方法,该方法基于自适应LASSO和极限学习机。首先对风功率序列进行非线性分位数回归得到自适应调节参数;然后利用基于自适应LASSO的分位数回归和改进的贝叶斯信息准则计算最优的基于极限学习机的分位数回归模型输出系数;最后输入风功率时间序列,得到超短期预测值。本发明所述方法构建的分位数回归预测模型,其区间评分明显优于传统基于分位数回归的预测模型,并且预测精度和区间宽度综合指标较好,极大的提高了风电功率预测可信度。
公开/授权文献
0/0