一种基于Tri-Training-Lasso-BP网络的静态电压稳定裕度预测方法
摘要:
本发明公开了一种基于Tri-Training-Lasso-BP网络的静态电压稳定裕度预测方法。该方法将神经网络、半监督训练、集成学习等技术应用于电力系统静态电压稳定裕度的预测中,提出了基于Tri-Training-Lasso-BP网络的在线预测方法,由三体训练法(Tri-Training)、最小绝对值收缩选择(least absolute shrinkageand select operator,Lasso)方法和BP(back propagation)神经网络组成。本发明方法能够降低对训练集数据数量和质量的要求,发挥电力系统日常运行过程中采集的海量数据的优势,提高网络的泛化能力和预测精度,减少人工干预,弥补了传统方法难以实现在线实时预测电压稳定裕度、需要大量训练样本、容易出现过拟合的问题。
0/0