一种用于实时识别物体形状的声学方法
摘要:
本发明公开了一种用于实时识别物体形状的声学方法,包括以下步骤:1得出神经网络的训练集和测试集;2将训练集输入声学超神经网络,经过多层声学超表面后,在探测面形成一定的声压分布;3探测面被划分为N个区域,取得这N个区域的总声能量值;4计算取得的N个值与物体的标签之间的误差,并运用误差来计算每一个超神经元所施加的相位调制的梯度,以此来更新梯度,从而更新相位,直到得到稳定的输出,并可以正确地识别目标对象;5通过更新后的相位值,确定超表面上每一个单元的相位偏移值,根据相位偏移值制作声学超表面;6将声学超表面放置合适的位置,声波经过声学超表面后,位于声学超表面后的探头即可识别出目标对象。
公开/授权文献
0/0