基于XGBoost的电力二次设备缺陷程度评估方法
摘要:
本发明公开了一种基于XGBoost的电力二次设备缺陷程度评估方法,该方法首先采集并整理电力系统二次设备相关缺陷数据,对采集到的电力系统二次设备历史缺陷数据进行去重、异常值过滤、去除缺失值等一系列预处理工作;然后基于Apriori算法对处理好的数据进行关联规则挖掘,筛选出与电力系统二次设备缺陷程度具有强关联规则的特征建立特征指标集,并对指标数据进行特征及标签编码,经过数据分组后,分别利用训练集和测试集数据对XGBoost模型进行训练和参数寻优;最后,用训练好的分类模型实现电力系统二次设备缺陷的准确分类,进而可以很好的辅助检修人员进行设备的维护与管理。
0/0