基于PNN神经网络和SWMM技术的管网淤积风险预测建模方法
摘要:
本发明提供了基于PNN神经网络和SWMM技术的管网淤积风险预测建模方法,包括以下步骤A:采集管网排水参数,基于SWMM模型对排水参数进行预处理;B:基于步骤A的预处理结果构建包括影响管网淤积情况和反应管网淤积情况的参数的历史数据;C:将历史数据输入PNN神经网络,得到淤积风险的预测模型。本发明提供的基于PNN神经网络和SWMM技术的管网淤积风险预测建模方法的优点在于:通过PNN神经网络和SWMM技术的结合,构建更精确的历史数据进行模型训练,解决了现有淤积判断方法的单一性、滞后性问题,便于管养单位制定详细的清淤养护方案,提高管网养护的效率。
0/0