一种特征自增强的循环神经网络的污水关键水质指标软测量方法
摘要:
本发明公开一种特征自增强的循环神经网络的方法,用于污水关键水质指标软测量。包括离线训练和在线软测量两个阶段。在离线阶段,首先对于历史的数据进行特征提取,本文选择运用OICA方法把原始数据提取成为高维的独立特征,之后采取二进制粒子群的方式,提取最优的独立特征组合并将其映射到最优特征的解混矩阵。在线测量时将数据经过离线时提取的解混矩阵跟待监测数据结合,将其映射到最优的特征维度,并将特征数据进入循环神经网络进行训练,得到软测量的结果。实验验证本发明的软测量精度高于传统的软测量方法,并且在污水处理过程复杂的环境下也可以有很高的精度,适合用于实际的工业过程。
0/0