基于深度学习的配电低压台区负荷预测方法及装置
摘要:
本发明公开了一种基于深度学习的配电低压台区负荷预测方法及装置,其中,方法包括以下步骤:采集配电低压台区量测数据;根据配电低压台区量测数据,通过Adam优化算法,基于反向传播算法迭代更新神经网络权重,并生成预测模型的输入值,训练预测模型;在预测模型满足预设条件后,采集当前配电低压台区量测数据,并将当前配电低压台区量测数据输入训练后的预测模型,得到配电低压台区负荷预测结果。该方法基于LSTM模型,并结合Wide模块与Deep模块的信息表达特性,搭建了一种全新的负荷预测模型,从而提高低压配电台区负荷预测精度。
0/0