发明公开
摘要:
本发明公开了一种基于孪生三维卷积神经网络的行为分类方法,步骤1,调整图像帧的长、宽到孪生三维卷积神经网络要求的大小;步骤2,把图像帧序列按连续16帧一组进行分组,把每组图像帧输入孪生三维卷积神经网络,提取抽象时间特征与抽象空间特征,把抽象时间特征输入到反卷积网络,得到光流场;步骤3,计算得到总损失函数为,表达式为:L=Lcls+αLflow;步骤4,利用反向传播技术优化网络参数,使网络性能达到最优。本发明算法具有速度与准确率上的双重优势。
公开/授权文献
- CN111027394B 基于孪生三维卷积神经网络的行为分类方法 公开/授权日:2023-07-07