一种人体图像关键点姿态估计方法
摘要:
本发明公开一种人体图像关键点姿态估计方法,包括以下步骤:首先将图像送入基于空洞卷积的特征金字塔网络DetectionNet进行图像检测,只输出人体用边界框标记的人体图像;然后裁剪成预定格式大小,并进行数据增强处理,形成训练数据;然后利用训练数据,训练融合空洞卷积Dilated conv的神经网络的人体图像关键点姿态估计模型,得到能够对人体图像进行姿态估计以得到人体固件关键点图像的深度神经网络模型:并用该模型进行人体姿态的估计。本发明可以将含有人体的输入图像进行关键点生成,并且生成估计处理后的图像中生成的人体关键点具有较高精度较好保持了人体的骨架几何信息。
0/0