基于类最优高斯核多分类支持向量机的微震信号识别方法
摘要:
一种基于类最优高斯核多分类支持向量机的微震信号识别方法,属于机器学习与数据挖掘领域。首先,对微震数据按照信道划分,并进行数据格式转换;其次,对每个信道数据根据均值和方差进行特征提取,并将同一样本的所有信道合并,构成新特征,利用类最优高斯核多分类支持向量机,对合成数据进行特征选择,生成降维后的非平衡训练样本集;再次,根据训练样本的非平衡率,确定欠采样倍率,对大类样本进行欠采样;最后,采用多分类支持向量机构建降维后的微震信号分类器。本发明可以有效减少冗余特征对分类的影响;通过对信道特征和合并特征进行双重降维,有效降低微震信号维度,提高微震信号分类器的正确率和时效性,增加冲击地压灾害预警的准确率。
0/0