发明公开
摘要:
本发明公开了一种基于SA-PFCM++算法的目标分群方法,首先初始化参数,并求出数据集的均值,计算每个样本点与所述均值的第一带权重欧式距离,排序后利用D2采样选择出第一个初始聚类中心,然后计算每个样本点与所述聚类中心的第二带权重欧式距离,排序后利用D2采样选择出下一个所述初始聚类中心,直至所述初始聚类中心数量达到设定条件,然后根据所述初始聚类中心迭代更新对应参数,直至迭代次数值达到设定阈值或聚类成员不再变化,计算对应的Xie-Beni-Sun(简称XBS)指标,然后更新初始参数值,直至达到设定停止条件,对比不同聚类数目下的XBS指标,输出设定XBS指标下的簇数目和类簇。有效降低了态势评估中目标分群的难度,提高了决策效率。