基于特征增强的推荐系统神经网络训练方法及装置
摘要:
本公开涉及一种基于特征增强的推荐系统神经网络训练方法及装置,所述方法包括:将第一训练集中的多个第一样本,输入第t轮待训练的神经网络中进行处理,得到与多个第一样本对应的预测分值;根据多个第一样本的特征信息及与多个第一样本对应的预测分值,分别确定神经网络对各个属性的关注度;根据关注度阈值及神经网络对各个属性的关注度,分别确定各个属性的增强概率;根据第一增强率及增强概率,从多个第一样本的特征信息中,确定出待更新的特征信息;根据待更新的特征信息及噪声特征值,更新第一训练集中的第一样本,得到更新后的第二训练集;根据第二训练集,对神经网络进行第t轮训练。本公开的实施例可提高神经网络的鲁棒性。
0/0