一种带噪声学习的负样本对抗生成方法
摘要:
本发明涉及一种基于自动编码器网络和生成对抗网络的数据生成方法。本发明提出的数据生成方法,可以有效地解决电子交易因样本不均衡问题带来的反欺诈模型构建困难的问题。使用自动编码器的样本表征能力,对输入样本编码结合随机噪声作为生成器输入,为先验噪声添加指导信息,并且编码后的噪声可以公平分配各个样本生成上的概率,有效的提高生成模型对边缘分布数据的捕获能力,该模型为解决欺诈样本不足提供了一种新的技术支持方案,具有一定的实用价值。
公开/授权文献
0/0