一种基于对抗域自适应学习的心电信号分类方法
摘要:
一种基于对抗域自适应学习的心电信号分类方法,使用多尺度特征提取模块提取的特征是高度域不变的,减少了域间差异,源域样本训练的模型也可以在目标域上更好的应用,网络训练结束后,保存最优模型,将新的心拍样本输入到保存的最优模型中,获得最终分类效果。使用多特征提取器可以增加特征的丰富性,更加全面的提取心电信号的细节信息,同时使用对抗域自适应学习的方法,可改善不同域样本分布不同的现象,获得高度概括源域样本和目标域样本之间的域不变特征,通过这些特征训练一个对目标域高度适用的分类模型,可提高数据分布不同的跨域心电信号的分类精度。
0/0