一种刀具状态智能监测的进化学习方法
摘要:
一种刀具状态智能监测的进化学习方法,利用三向加速度传感器和传声器采集振动信号和声信号,对信号进行平滑处理,并将其划分为训练集和测试集;采用堆叠自编码器对动态信号的深层次特征进行自动提取,并对提取的特征进行分类;根据训练集模型准确度对各算法进行权重分配,通过加权平均获得最终预测的刀具状态,并保存模型相关参数;将实际加工过程中的实时振动信号和声信号经数据预处理后输入保存过的监测模型中,获得对应信号的刀具状态,保存置信度水平较高的数据标签,并对网络参数进行更新,从而实现刀具状态智能监测的进化学习。本方法可避免人工的参与,降低计算复杂度,且能减弱机床性能退化对刀具状态监测模型预测准确度的影响。
公开/授权文献
0/0