基于LSTM栈式自编码多模型荷预测方法及系统
摘要:
本发明属于负荷预测技术领域,具体涉及基于LSTM栈式自编码多模型荷预测方法及系统。该方法包括获取数据集,对数据集进行预处理;建立电动汽车充电开始时间的概率模型并重构数据集;构建LSTM栈式自编码结构并训练;利用XGBoost模型预测短期负荷,并进行指标评价。该系统包括获取数据集模块,预处理模块,概率模型和重构模块,LSTM栈式自编码结构的构建和训练模块,预测模块,指标评价模块。本发明提出的方法能够考虑电动汽车充电负荷的影响,最大程度利用原始数据,深度学习其内部特征,有效提高短期负荷预测精度。
公开/授权文献
0/0