社交媒体网络事件传播关键时间预测方法、系统、介质
摘要:
本发明属于在线信息传播预测技术领域,公开了一种社交媒体网络事件传播关键时间预测方法、系统、介质,根据社交媒体网络事件在线信息的不同时间序列特征,进行类别划分;采用霍尔特线性趋势法对波动性过强的流行度时间序列进行平滑处理;识别预处理后的社交媒体网络事件传播的关键节点发生的时间区间;针对经过预处理后的时间序列数据进行时间窗口划分,基于在线信息数据提取时序、波动及文本情感特征;构建预测模型训练样本,根据训练样本和未来时间窗口数量,采用XGBoost算法训练预测模型;采用训练完成的模型预测社交媒体网络事件传播过程的关键节点发生的时间。本发明能有效预测社交媒体网络事件传播过程的关键节点发生时间。
0/0