一种水电机组劣化预测方法和系统
摘要:
本发明实施例提供一种水电机组劣化预测方法及系统,方法包括:根据采集到的稳态工况下水电机组工况参数与摆度数据,训练完成不同摆度的健康状态模型;计算不同机组部件的摆度劣化序列,并将所述不同部件摆度劣化序列进行融合得到融合劣化序列;对融合摆度劣化序列进行预测得到劣化趋势。本发明实施例提供的一种水电机组劣化预测方法及系统,分别对不同部件的摆度建立了健康状态模型,并计算得到了不同部件的融合劣化度,既可以反映不同部件的状态,更有利于全面的反映机组整体的劣化程度,并且利用门控循环单元神经网络对时间序列数据特征提取的优势以及深度神经网络较浅层网络更强的学习能力,使模型的预测精度更高。
0/0