基于多层神经网络的电力实体识别方法、存储介质和设备
Abstract:
本发明公开了一种基于多层神经网络的电力实体识别方法、存储介质和设备,将待识别的电力语料输入至预先构建的BERT电力实体识别模型中,得到电力实体标签的哈夫曼编码,通过哈夫曼编码映射得到实体标签,进而得到识别出的实体。通过语言模型训练语料对BERT语言模型进行预训练;对电力语料数据标注电力实体标签,构建电力实体识别语料;根据电力实体标签在电力实体识别语料中的数量构建电力实体标签的哈夫曼编码;在预训练得到的BERT语言模型后增加分类层构成BERT电力实体识别模型,通过电力实体识别语料对BERT电力实体识别模型进行再次训练,得到训练好的BERT电力实体识别模型。提高了电力领域中文命名实体识别的精度。
Patent Agency Ranking
0/0