一种车联网中基于同态加密的联邦学习隐私保护方法
摘要:
本发明提供一种车联网中基于同态加密的联邦学习隐私保护方法,将基于同态加密的联邦学习引入车联网中,通过改进具有加法同态行的Paillier算法和具有乘法同态性的RSA算法,并结合AES算法和步长混淆的方式,同时采用分层加密技术,使加法同态在边缘端完成,而乘法同态在云端完成以提高加密效率,从而有效防止联邦学习恶意攻击,并有效降低加密导致的延迟的方法;该发明可以应用在车联网中进行隐私保护将联邦学习引入IoV中以解决用户隐私泄露问题。为了进一步地增强数据安全性,在联邦学习中引入高效的同态加密;而且改进了具有加法同态性的Paillier算法和具有乘法同态性的RSA算法,并结合AES算法和步长混淆的方式,构建一个具有全同态加密性的联邦学习架构。
0/0