一种变曲率自适应点云数据下采样方法
摘要:
本发明属于点云精简算法技术领域,提供了一种变曲率自适应点云数据下采样方法。该方法首先通过GPU并行计算实现模型点云局部曲面高精度拟合,得到模型点云曲率分布;基于正态分布的3原则获取曲率梯度;基于八叉树,对模型实现最小特征保留的最优网格划分,得到底层待处理单元;根据处理单元的点云密度以及曲率均值,计算待处理单元的密度权值和曲率权值;生成点云处理单元的关联权值并生成系统抽样的精简标准,根据自适应的系统抽样对每一个待处理单元进行精简,实现大尺寸模型点云数据的下采样任务。
公开/授权文献
0/0