一种电能表端子温度检测方法
摘要:
本发明提供了一种电能表端子温度检测方法,采用多种群互生粒子群优化算法对径向基神经网络参数进行优化,建立径向基神经网络预测模型,使用该模型进行电能表端子温度的间接测量,属于电能计量领域。本发明采用K‑Means++算法确定径向基神经网络的中心向量、采用多种群相互影响的方法优化径向基神经网络的宽度系数、采用递推最小二乘法求解径向基神经网络的连接权值。根据优化算法计算出径向基神经网络的最佳参数,并构建全新的径向基神经网络模型,用于构建适合检测电能表端子温度的模型,使电能表端子温度的检测精度更高。
公开/授权文献
0/0