一种基于全局-局部对抗学习框架的跨域道路提取方法
摘要:
本发明公开了一种基于全局‑局部对抗学习框架的跨域道路提取方法,该方法具有以下两个显著特点:一是利用一个全局‑局部对抗学习框架用于高分辨率遥感影像跨域道路提取,该框架首先利用生成器生成特征,来混淆判别器,生成器后面紧接着两个分支,一个分支进行道路分割,另一个分支通过全局‑局部对抗学习引导生成器生成域不变特征。第二,全局‑局部对抗学习过程中,使用两个互斥分类器对道路进行识别,两个分类器识别的差异可以反映每一个像素的识别难易程度,从而自适应地对对抗损失进行加权,自动减慢或加速对抗学习的过程。本方法可以明显改善道路缺失现象,对于一些困难的样本也能较好的识别,显著提升道路识别精度。
0/0